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Abstract

In this paper we describe a novel general purpose image interpolation method
based on the combination of two different procedures. First, an adaptive algo-
rithm is applied interpolating locally pixel values along the direction where
second order image derivative is lower. Then interpolated values are mod-
ified using an iterative refinement minimizing differences in second order
image derivatives, maximizing second order derivative values and smoothing
isolevel curves. The first algorithm itself provides edge preserving images
that are measurably better than those obtained with similarly fast methods
presented in the literature. The full method provides interpolated images
with a ”natural” appearance that do not present the artifacts affecting linear
and nonlinear methods. Objective and subjective tests on a wide series of
natural images clearly show the advantages of the proposed technique over
existing approaches.

1 Introduction
Image upscaling is often necessary for a variety of applications, such as printing, video
streaming, image processing, texture mapping for model rendering, etc. Simple tech-
niques like pixel replication or linear interpolation are not satisfactory due to the creation
of visual artifacts like pixelization, jagged contours, oversmoothing. To overcome these
problems, new algorithms creating upscaled images with sharper edges and reduced ar-
tifacts have been introduced, but an optimal method providing reasonably natural and
artifact free upscaled images with a low computational complexity did not emerge clearly.

In this paper we propose a new general purpose image upscaling method which uses
local second order information to adapt the interpolation and an iterative refinement able
to remove artifacts while preserving relevant image features and natural texture.

Objective and subjective tests against other well known methods show that the method
is clearly an improvement on previous ones. It provides a reasonable reconstruction of
the missing information and requires considerably less computational power than other
method achieving good scores, a feature that is also extremely important for interpolation
algorithms, especially in the case of real time applications. The paper is organized as
follows: Section 2 presents an overview of different image upscaling methods, Section 3
describes the new methods proposed, Section 4 discusses experimental results.



2 Interpolation techniques: a review
Several approaches have been proposed to guess reasonable high resolution patterns from
low resolution original images. The problem is quite complex as, in general, no hints
on the real high resolution signal are available. The most sophisticated interpolation
methods try to extract statistical information on the relationship between high and low
resolution images from a training set of natural images (or images of interest). A similar
approach is used in [8], where texton substitution is used to increase the resolution of im-
age sequences. In [7] a Markov Model is used to optimize patch replacement preserving
continuity. A similar approach is also used in [15], where ”primal sketch priors” are con-
structed and used to enhance the quality of the high resolution images. In [6] the param-
eters of an edge model are related to the low resolution patches using machine learning.
In [2] low resolution pixels are first classified in the context of a window of neighboring
points, then different filters are used depending on the classification results. The problem
with this approach is that the huge variety of natural textures and scales makes a general
purpose use of the techniques quite difficult, though they can be efficiently applied to
particular tasks (i.e. search of patterns such as faces, trees, etc.).

The interpolation methods usually applied in practical applications do not use statis-
tical information and make only smoothness and edge continuity assumptions to guess
reasonable high resolution patterns. Despite the simplicity of the task and the intuitive
assumptions, however, a variety of methods have been presented to achieve this goal and
a dominant method unanimously adopted for the task has not clearly emerged. The sim-
plest algorithms compute the interpolated values as a linear combination of the original
ones closest to the new position. Using different neighborhoods and kernels, the classic
bilinear, bicubic, Lanczos and other methods widely applied in image viewers and image
processing tools have been obtained. These methods are computationally efficient, even if
the images obtained do not appear ”natural” due to excessive blurring and jagged artifacts.

Nonlinear methods have been proposed to overcome these limits, usually exploiting
local features like edges (they are often called edge-adaptive). In [10] the interpolation
is guided by the output of directional filter banks. In [13] the high resolution image is
modeled as a Gibbs-Markov Field and the zooming procedure is obtained optimizing
convex functionals. In [16] a Laplacian Pyramid decomposition is performed and used
for the prediction of local high frequency components. The approach developed in [12]
consists of first determining the local quadratic signal from local patches, then estimating
missing samples applying optimal recovery. In [11] an iterative method based on level
set theory and isophotes (i.e. curves of constant intensity) smoothing is applied, along
with some ad hoc rules to prevent change in topology and other side effects. In [17]
a kernel that adapts to the local orientation of isophotes is used to reduce artifacts in
bilinear interpolation. Also in [4], the authors use bilinear interpolation and then try to
correct the error by utilizing the interpolation error theorem in an edge-adaptive way.

A particular class of efficient edge-based algorithms is represented by methods using
simple heuristics to determine the edge direction from 4 neighboring points in the low
resolution image and then add interpolated pixels obtained as weighted averages of the
neighbors, with weights depending on the edge direction. Algorithms of this kind are the
Data Dependent Triangulation [14] and the methods proposed in [3] and [5]. A similar
approach is also the basis of the NEDI technique [9] that uses a large patch around the 4
points to estimate the weights, assuming local constant covariance at different scales. We



have shown in a recent paper [1] that, using adaptive windows and other simple heuristics,
it is possible to improve the performances of the original NEDI implementation obtain-
ing very good results, even in the case of large scale factors. Unfortunately we found
two major drawbacks in the method: high computational complexity (several minutes to
enlarge common images) and creation of evident artifacts near high frequency patterns,
due to the large support required for the least squares covariance estimation. We were
therefore motivated to find a method that could combine the efficiency of the fast edge
directed interpolators and the image quality of the improved NEDI.

3 Interpolation based on second order image derivatives
Methods described at the end of the previous section, enlarge images approximately by a
factor of 2 by copying original pixels (indexed by i, j) into an enlarged grid (indexed by
2i, 2j) and then filling gaps with ad hoc rules based on local edge analysis (larger magni-
fication factors can be obtained by recursively applying the algorithm on the output).

The procedure is usually performed in two steps: in the first one, pixels indexed by
two odd values (darker pixel in Fig. 1 A) are computed as a weighted average of the
four diagonal neighbors (pixels of the original image); in the second the remaining holes
(e.g. black pixel in Fig. 1 B) are filled with the same rule, as a weighted average of the 4
nearest neighbors (in horizontal and vertical directions).

Figure 1: Two step interpolation based on the configuration of four neighbors

The NEDI method [9] computes the weights by assuming the local image covariance
constant in a large window and at different scales. With this constraint, an overconstrained
equation system can be obtained and solved. Using some tricks to adapt window size and
to handle matrix conditioning , we obtained a modified (iNEDI) method see [1], providing
sharp images although with a high computational cost and a rather unnatural texture in
high frequency regions.

Fast methods using similar pixel replication and hole filling approaches are extremely
efficient, even if the quality of the results is not comparably good. In [14], the central point
is obtained interpolating the two opposite ones in the direction where the pixel difference
is lower. In [3, 5] more complex heuristics are used, still based on pixel differences
and thresholding. These methods are interesting due to the edge adaptivity and the low
complexity, but they fail to capture the correct edge behavior in several cases. Even if
they provide a visual appearance with less jagged artifacts they usually perform worse
than bicubic interpolation in objective comparisons. We believe that a big limitation of
these methods is that they just try to minimize image variation (first order derivatives)
along selected directions, while NEDI interpolation is better adapted to the most probable
edge shape because it use second order information to obtain the coefficients. In fact,



the constant covariance condition, if the local image variation is not too big, is equivalent
to the assumption of local constancy of second order derivatives, roughly approximating
curvatures of the profile describing image brightness along the selected direction.

Focusing on this idea, we designed a new interpolation method composed of two
different procedures. The first is a simple rule-based hole-filling method which computes
new samples by interpolating along the direction where the second order image derivative
is lower (FCBI, Fast Curvature Based Interpolation). The second refines the values of the
interpolated pixels through an iterative algorithm trying to force second order derivative
continuity with some additional constraints for edge preservation. The result is a new
interpolation algorithm that we call ICBI (Iterative Curvature Based Interpolation).

3.1 Fast curvature based interpolation
The method is similar to the Data Dependent Triangulation, but instead of obtaining the
new pixel values by averaging the two opposite neighbors with lower difference, we com-
pute second order derivatives in the two diagonal directions and interpolate the two op-
posite neighbors in the direction where the derivative is lower. In detail, if we consider
the first interpolation step shown in Fig. 1 A, we compute the local approximation of the
second order derivatives Ĩ11(2i+1,2 j +1) and Ĩ22(2i+1,2 j +1) along the two diagonal
directions using a 12 pixel neighborhood (2) as:

Ĩ11(2i+1,2 j +1) = I(2i−2,2 j +2)+ I(2i,2 j)+ I(2i+2,2 j−2) (1)
−3I(2i,2 j +2)−3I(2i+2,2 j)+ I(2i,2 j +4)+ I(2i+2,2 j +2)+ I(2i+4,2 j)

Ĩ22(2i+1,2 j +1) = I(2i,2 j−2)+ I(2i+2,2 j)+ I(2i+4,2 j +2)+ (2)
−3I(2i,2 j)−3I(2i+2,2 j +2)+ I(2i−2,2 j)+ I(2i,2 j +2)+ I(2i+2,2 j +4)

The interpolated value at location (2i+1,2j+1) is then:

(I(2i,2 j)+ I(2i+2,2 j +2))/2 if Ĩ11(2i+1,2 j +1) > Ĩ22(2i+1,2 j +1),
(I(2i+2,2 j)+ I(2i,2 j +2))/2 otherwise.

The second step is performed in the same way, computing the approximations of the
second order derivatives in horizontal and vertical directions. We only avoid the use of
this simple rule when first order derivatives of the intensity are larger than a fixed, large

Figure 2: Edge-based interpolation based on a 12-pixels neighborhood: the largest second
order diagonal derivative determines the interpolation direction.



threshold (in this case the derivative is not a good approximation of directional curvature).
In this case we interpolate in the direction with lower gray level difference.

Images obtained with this fast method are better than those obtained with similar fast
edge directed methods (see Section 4), but not comparable, for example, with that ob-
tained with improved NEDI. We therefore improved the algorithm by adding an iterative
refinement able to improve edge quality at each interpolation step by smoothing second
order directional derivatives keeping original pixel values fixed and adding constraints to
preserve sharp discontinuities. The procedure is motivated by the fact that it is easy to
derive, from NEDI equations, that one of the effects of the constant covariance constraint
is, in case of limited intensity differences, to impose local continuity in second order
derivatives of the intensity itself.

3.2 Iterative curvature based interpolation
In the following, we describe the procedure and the energy terms used for the first in-
terpolation step (filling gaps in the enlarged grid at locations (2i + 1,2 j + 1)). Modified
formulas for the second step filling the remaining gaps are straightforward. First we in-
troduced the term:

Uc(2i+1,2 j +1) =
w1(|(I11(2i,2 j)− I11(2i+1,2 j +1))|+ |(I22(2i,2 j)− I22(2i+1,2 j +1))|)+
w2(|(I11(2i,2 j)− I11(2i+1,2 j−1))|+ |(I22(2i,2 j)− I22(2i+1,2 j−1))|)+
w3(|(I11(2i,2 j)− I11(2i−1,2 j +1))|+ |(I22(2i,2 j)− I22(2i−1,2 j +1))|)+
w4(|(I11(2i,2 j)− I11(2i−1,2 j−1))|+ |(I22(2i,2 j)− I22(2i−1,2 j−1))|) (3)

where I11, I22 are local approximations of second order directional derivatives, computed
as:

I11(2i+1,2 j +1) = I(2i−2,2 j−2)+ I(2i+2,2 j +2)−2I(2i+1,2 j +1) (4)

I22(2i+1,2 j +1) = I(2i−2,2 j +2)+ I(2i+2,2 j−2)−2I(2i+1,2 j +1) (5)

This energy term sums local directional changes of second order derivatives. Weights
wi are set to 1 when the first order derivative in the corresponding direction is not larger
than a fixed threshold and to 0 otherwise. In this way smoothing is avoided when there
is a strong discontinuity. The minimization of this term roughly corresponds to force
continuity in the local curvatures of the continuous surface ideally describing the image.
It tends to keep the local curvatures at different scales constant, as the constant covariance
constraint does in the NEDI method. The only problem of the method can be an excessive
smoothing, which can be reduced by adding other energy terms. We therefore added an
energy term enhancing the absolute value of the second order derivative:

Ue(2i+1,2 j +1) =−|I11(2i+1,2 j +1)|+ I22(2i+1,2 j +1)| (6)

and a term for isophotes (i.e. isolevel curves) smoothing. This is derived from [11]
who used for an iterative isophote smoothing a local force defined as

f (I) =− I1(i, j)2I22(i, j)−2I1(i, j)I2(i, j)I12(i, j)+I22(i, j)2I1(i, j)
I1(i, j)2 + I2(i, j)2 ) (7)



with I11, I22, I12, I1, I2 being local approximations of first and second order directional
derivatives.

This force alone was not able to produce very good and natural interpolated images,
as also stated in the original paper, while the addition of a derived potential to the cur-
vature continuity and curvature enhancement terms is able to improve the quality of our
interpolation results in edge regions. The potential is defined as:

Ui(2i+1,2 j +1) = f (I)|2i+1,2 j+1I(2i+1,2 j +1) (8)

I11, I22 are computed as before, the other derivatives estimates are obtained as:

I12(2i+1,2 j +1) = (9)
0.5(I(2i+1,2 j−1)+I(2i+1,2 j +3)−I(2i+1,2 j +1)−I(2i+3,2 j +1))
I1(2i+1,2 j +1) = 0.5(I(2i,2 j)− I(2i+2,2 j +2)) (10)
I2(2i+1,2 j +1) = 0.5(I(2i,2 j +2)− I(2i+2,2 j)) (11)

The complete energy function for each pixel location (2i+1,2 j+1), sum of the ”cur-
vature continuity”, ”curvature enhancement” and ”isophote smoothing” terms becomes
therefore:

U(2i+1,2 j +1) = αUc(2i+1,2 j +1)+βUe(2i+1,2 j +1)+ γUi(2i+1,2 j +1) (12)

The first step of the iterative interpolation correction (adjusting pixel values with two odd
indexes) is finally implemented as a simple greedy minimization of the energy: after the
placement of the original pixels at locations (2i,2 j) and the insertion of rough interpolated
ones at locations (2i + 1,2 j + 1), we compute, for each new pixel, the energy function
U(2i+1,2 j+1) and the two modified energies U+(2i+1,2 j+1) and U−(2i+1,2 j+1),
i.e. the energy values obtained by adding or subtracting a fixed value δ to the the local
pixel value I(2i+1,2 j+1). The intensity value corresponding to the lower energy is then
assigned to the pixel. This procedure is iteratively repeated until the sum of the modified
pixels at the current iteration is lower than a fixed threshold, or the maximum number of
iterations has been reached. The number of iterations can be also fixed in order to adapt
the computational complexity to timing constraints. α , β and γ were chosen by trial and
error to obtain a tradeoff between edge sharpness and artifacts removal.

After the second hole-filling step (assigning values to all the remaining empty pixels),
the iterative procedure is repeated in a similar way, just replacing the diagonal derivatives
in the energy terms with horizontal and vertical ones and iteratively modifying only the
values of the newly added pixels. The complete ICBI algorithm is summarized in Fig. 3.

4 Experimental results
We tested the algorithms proposed on a database of 25 natural images selected from the
morgueFile online archive (http://morguefile.com). All images are subject to the license
agreement available at the web page http://morguefile.com/archive/terms.php. Selected
images (RGB, 8 bit) provide a wide range of colors and natural textures. In the algorithm
description the equation are written for grayscale images; of course, color images can
be enlarged in the same way by repeating the procedures independently for each color
component or computing interpolation coefficients on the image brightness and using
them for all the channels, reducing in this way the computational cost and avoiding color
artifacts.



• Put original pixels in the enlarged grid at locations 2i,2j

• Insert pixels at locations 2i+1 2j+1 with the FCBI method

• Apply iterative correction until the image variation is above a given

threshold or the maximum number of iterations is reached

• Insert pixels in the remaining locations with the FCBI method

• Apply iterative correction to the added pixels

• Repeat the whole procedure on the new image for further enlargements

Figure 3: Pseudocode for the ICBI algorithm

Figure 4: Selected images from the test database.

4.1 Objective test
The objective test compares images obtained downsampling the original images and then
enlarging them with different methods with reference images obtained just downsam-
pling the original ones to the corresponding size. For simplicity we converted images
to 8 bit grayscale, the use of all three color channel being not relevant to this test. We
created 128x128 and 256x256 subsampled version of the original images and the differ-
ent downsampled reference images correctly shifted in order to compensate the slightly
different zoom factors and translation created by the algorithms. In fact, methods like
ours do not provide exact 2X or 4X scale factors, being the exact enlargement at each step
(2width−1)/width horizontally and (2height−1)/height vertically. Finally, we enlarged
the 256x256 images by a 2X factor and the 128x128 versions by a 4X factor, and mea-
sured the differences between the upscaled images and the reference ones by evaluating
the Peak Signal to Noise Ratio, defined as:

PSNR = 20log10
MAXPIX

∑W
i=1 ∑H

j=1(Iup(i, j)−Iorig(i, j))2

(W∗H)

(13)

where Iup(i, j) is the upscaled subsampled image, Iorig the original one, W and H the
image dimensions and MAXPIX the end scale value of the pixel intensity.

The results for a 2X enlargement of 256x256 images and 4X enlargement of 128x128
images are summarized in Table 1. The results for FCBI and ICBI have been obtained
with a Matlab implementation of the proposed algorithms, Nearest Neighbor and Bicu-
bic interpolated images have been obtained with Matlab builtin functions, original NEDI
and iNEDI interpolated images were obtained with Matlab implementations and Chen’s
method was implemented by us according to [5].

The iterative method produced clearly the best results, but the most interesting fact is
that the iterative method is relevantly faster than iNEDI. Table 2 shows the average time
necessary to enlarge images with different methods. Computation times reported in tables



ICBI FCBI iNEDI NEDI Chen Iso. Bic. NN
2X dB 31.07 29.82 30.64 29.71 29.50 29.47 30.36 28.13
4X dB 25.33 24.46 25.18 24.30 24.19 24.11 24.91 23.43

Table 1: Peak signal to noise ratios (dB) obtained by comparing images upscaled by ap-
proximately 2X and 4X factors with reference images. The new iterative method provided
the best results, while the FCBI method produced images closer to the reference ones than
those obtained with similar methods based on first order derivatives (i.e. Chen’s).

ICBI FCBI iNEDI NEDI Chen
2X time(s) 12.91 0.17 312.44 221.64 0.11
4X time(s) 13.30 0.18 372.83 293.36 0.12

Table 2: Average computation times obtained with non-optimized Matlab implementa-
tions of the algorithms. A C++ implementation of the ICBI methods requires about 1.2
sec. for 4x upscaling.

are obtained with non optimized Matlab implementations on a Dell XPS M1210 laptop
with an Intel Core2 Duo T7200 2.0 GHz CPU. The iterative nature of the algorithm can be
also used to adapt image quality to the available hardware performances. By limiting the
number of iterations we can obtain good quality and artifacts-free images with a reduced
computational cost: with a maximum of 5 iterations, for example, the PSNR differ on
average less than 0.1 dB from the best value and the computation is three times faster.
In order to test the possibility of reaching real time performances, we ported ICBI in
C++, using the OpenCV libraries for image handling and display (Gentoo Linux, same
hardware as before). The time required for a 4X upscaling of a 128x128 images has been
reduced to an average of 1.2 sec. (same parameters of Matlab tests in Table 2).

4.2 Subjective test
In order to compare perceived image quality, we have taken a subset of 10 of the previ-
ously described RGB images and enlarged them by a 4x factor with six different algo-
rithms (NEDI, iNEDI, bicubic, Chen’s, FCBI, ICBI). We then asked a group of 12 people
to compare them in order to select the method providing the best average ”perceived
quality”. All the different possible couples of corresponding images were presented (in
random order) to the subjects involved in the test, who were asked to choose the preferred
image for each of them. The sum of the successful comparisons for each interpolation
method was then taken as the quality score of the method itself. The average scores (to-
tal number of preferences divided by the number of images multiplied by the number of
subjects) are reported in Fig. 5. We can observe some differences between the results
obtained and the results of the objective test. FCBI is now preferred to bicubic inter-
polation being able to remove jagged artifacts that strongly affect bicubic interpolation.
Images enlarged with ICBI were usually rated as the best. It must be considered that the
only method with scores not too far from ICBI is iNEDI a method presenting a prohibitive
computational complexity for most practical applications. Fig 6 shows the evident artifact
removal obtained with the ICBI method.



Figure 5: Average qualitative scores obtained by a group of 12 people comparing pairs
of differently enlarged (4X) images and selecting for each pair the preferred one. The
score of each algorithm is the average number of preferences of the algorithm on the 5
comparisons made by each person on each image.

Figure 6: A: 4X enlargement obtained with Bicubic interpolation: jagged artifacts are
evident. B: Same detail enlarged with ICBI. Artifacts are completely removed. C: 4X
enlargement obtained with improved NEDI: directional artifacts are evident. D: Same
detail enlarged with ICBI. Artifacts are completely removed.

5 Discussion
In this paper we presented two new general purpose image interpolation algorithms. The
first (FCBI), like many others, puts original pixels in an enlarged grid and fill holes aver-
aging neighboring pixels in two steps. The new idea is to interpolate directionally in order
to preserve locally second order derivatives. The second method (ICBI) adds to the pre-
vious method an iterative refinement that try to reduce second order derivatives changes
keeping original pixel values fixed and also preserving large gray level variations and
smoothing isophote lines. This procedure creates images that have a natural aspect and
present less artifacts than those obtained with other techniques in literature. Furthermore,
the method is not computationally heavy as iNEDI or example based methods and is suit-
able for real time applications. Experimental results (qualitative and quantitative tests on
heterogeneous natural images) show the advantages of the approach proposed. Matlab
code with GPL license and a compiled C version of ICBI are available at the web site
www.andreagiachetti.it/icbi. We plan to improve our method by using a multiresolution
derivative estimation and to optimize implementations to reach real time performances.
Acknowledgements: Thanks to Xin Li for providing original NEDI implementation. An-
nalisa Brughitta checked the English.
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